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We introduce an exact spin transformation that maps frustrated Zi,jZi,j+1 and Xi,jXi+1,j spin interactions along
the rows and columns of the quantum compass model �QCM� on an L�L square lattice to �L−1�� �L−1�
quantum spin models with 2�L−1� classical spins. Using the symmetry properties we unravel the hidden dimer
order in the QCM, with equal two-dimer correlations �Xi,iXi+1,iXk,lXk+1,l� and �Xi,iXi+1,iXl,kXl+1,k� in the ground
state, which is independent of the actual interactions. This order coexists with Ising-type spin correlations
which decay with distance.
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I. INTRODUCTION

The quantum compass model �QCM� originates from the
frustrated �Kugel-Khomskii� superexchange1 in transition-
metal oxides with degenerate 3d orbitals. Recent interest in
this model is motivated by its interdisciplinary character as it
plays a role in the variety of phenomena beyond the corre-
lated oxides. It describes a quantum phase transition between
competing types of order when anisotropic interactions are
varied through the isotropic point, as shown by an analytical
method,2 mean-field �MF�,3 and numerical studies.4–8 The
QCM is dual to the models of p+ ip superconducting arrays9

and to the toric code model in a transverse field.10 It was also
suggested as an effective model for Josephson arrays of pro-
tected qubits,2 as realized in recent experiment.11 Finally, it
could describe polar molecules in optical lattices and sys-
tems of trapped ions.12

In spite of several numerical studies,4–8 the nature of spin
order in the two-dimensional �2D� QCM is not yet fully un-
derstood. By an exact solution of the QCM on a ladder we
have shown, however, that the invariant subspaces may be
deduced using the symmetry.13 The 2D QCM shows a
self-duality9 which might serve to reveal nontrivial hidden
symmetries.14 In this Rapid Communication we employ ex-
act spin transformations which allow us to discover a surpris-
ing hidden dimer order in the QCM which manifest itself by
exact relations between four-point correlation functions in
the ground state. We also demonstrate nonlocal MF splitting
of the QCM in the ground subspace and determine spatial
decay of spin correlations in the thermodynamic limit.

II. REDUCED HAMILTONIAN

We consider the anisotropic ferromagnetic QCM for pseu-
dospins 1/2 on an L�L square lattice with periodic boundary
conditions �PBC�

H��� = − �
i,j=1

L

��1 − ��Xi,jXi+1,j + �Zi,jZi,j+1� , �1�

where �Xi,j ,Zi,j� stand for Pauli matrices at site �i , j�, i.e.,
Xi,j ��i,j

x and Zi,j ��i,j
z components, interacting on vertical

and horizontal bonds. In case of L being even, this model is
equivalent to the antiferromagnetic QCM. We can easily con-

struct a set of 2L operators which commute with the Hamil-
tonian but anticommute with one another:2 Pi�	 j=1

L Xi,j and
Qj �	i=1

L Zi,j. Below we will use as symmetry operations all
Ri� PiPi+1 and Qj to reduce the Hilbert space; this approach
led to the exact solution of the compass ladder.13 The QCM,
Eq. �1�, can be written in common eigenbasis of �Ri ,Qj�
operators using

Xi,j = 	
p=i

L

X̃p,j, X̃i,j = Xi,j−1� Xi,j� , �2�

Zi,j = Z̃i−1,jZ̃i,j, Z̃i,j = 	
q=j

L

Zi,q� , �3�

where Z̃0,j �1 and Xi,0� �1. One finds that the transformed

Hamiltonian, H����=−�1−��Hx�−�Hz�, contains no X̃L,j and

no Zi,L� operators so the corresponding Z̃L,j and Xi,L� can be
replaced by their eigenvalues qj and ri, respectively. The
Hamiltonian H���� is dual to the QCM H��� of Eq. �1� in
the thermodynamic limit; we give here an explicit form of its
x part

Hx� = �
i=1

L−1
�
j=1

L−2

Xi,j� Xi,j+1� + Xi,1� + riXi,L−1� � + P1� + �
j=1

L−2

Pj�Pj+1�

+ rPL−1� , �4�

where r=	i=1
L−1ri, and new nonlocal Pj�=	p=1

L−1Xp,j� operators
originate from the PBC. The z part Hz� follows from Hx� by
lattice transposition Xi,j� →Zi,j� , and by ri→sj =qjqj+1. Ising
variables ri and sj are the eigenvalues of the symmetry op-
erators Ri and Sj =QjQj+1.

Instead of the initial L�L lattice of quantum spins, one
finds here �L−1�� �L−1� internal quantum spins with 2�L
−1� classical boundary spins. The missing spin is related to
the Z2 symmetry of the QCM and makes every energy level
at least doubly degenerate. Although the form of Eq. �4� is
complex, the size of the Hilbert space is reduced in a dra-
matic way by a factor 22L−17 which makes it possible to
perform easily exact �Lanczos� diagonalization of 2D L�L
clusters up to L=5 �L=6�.
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III. EQUIVALENT SUBSPACES

The original QCM of Eq. �1� is invariant under the trans-
formation X�↔Z�, if one also transforms the interactions,
�↔ �1−��. This implies that subspaces �r� ,s�� and �s� ,r�� give
the same energy spectrum which sets an equivalence relation
between the subspaces—two subspaces are equivalent means
that the QCM, Eq. �1�, has in them the same energy spec-
trum. This relation becomes especially simple for �= 1

2 when
for all ri’s and si’s subspaces �r� ,s�� and �s� ,r�� are equivalent.

Now we will explore another important symmetry of the
2D compass model reducing the number of nonequivalent
subspaces—the translational symmetry. We note from Eq. �4�
that the reduced Hamiltonians are not translationally invari-
ant for any choice of �r� ,s�� even though the original Hamil-
tonian is. This means that translational symmetry must im-
pose some equivalence conditions among subspace labels
�r� ,s��. To derive them, let us focus on translation along the
rows of the lattice by one lattice constant. Such translation
does not affect the Pi symmetry operators because they con-
sist of spin operators multiplied along the rows but changes
Qj into Qj+1 for all j�L and QL→Q1. This implies that two
subspaces �r� ,q1 ,q2 , . . . ,qL� and �r� ,qL ,q1 ,q2 , . . . ,qL−1� are
equivalent for all values of r� and q� . Now this result must be
translated into the language of �r� ,s�� labels with sj =qjqj+1 for
all j�L. This is two-to-one mapping because for any s� one
has two q�’s such that q�+= �1,s1 ,s1s2 , . . . ,s1s2 . . .sL−1� and
q�−=−q�+ differ by global inversion. This sets additional
equivalence condition for subspace labels �r� ,s��: two sub-
spaces �r� ,u�� and �r� ,v�� are equivalent if two strings
�1,u1 ,u1u2 , . . . ,u1u2 , . . . ,uL−1� and �1,v1 ,v1v2 , . . . ,v1v2 ,
. . . ,vL−1� are related by translations or by a global inversion.
For convenience let us call these two vectors TI �translation-
inversion� related. Lattice translations along the columns set
the same equivalence condition for r� labels. Thus full
equivalence conditions for subspace labels of the QCM are:
�1� for �= 1

2 two subspaces �r� ,s�� and �u� ,v�� are equivalent if
r� is TI related with u� and s� with v� or if r� is TI related with v�
and s� with u� . �2� For �� 1

2 two subspaces �r� ,s�� and �u� ,v�� are
equivalent if r� is TI related with u� and s� with v� . We have

verified that no other equivalence conditions exist between
the subspaces by numerical Lanczos diagonalizations for lat-
tices of sizes up to 6�6 so we can change all if statements
above into if and only if ones.

IV. HIDDEN DIMER ORDER

Due to the symmetries of the QCM Eq. �1� only �Zi,jZi,j+d�
and �Xi,jXi+d,j� spin correlations are finite �d�0�. This sug-
gests that the entire spin order concerns pairs of spins from
one row �column� which could be characterized by four-
point correlation functions of the dimer-dimer type. Indeed,
examining such quantities for finite QCM clusters via Lanc-
zos diagonalization we observed certain surprising symme-
try: for any � dimer-dimer correlators �Di,jDk,l� with Di,j
�Xi,jXi+1,j, are invariant under the reflection of the second
dimer with respect to the diagonal passing through site �i , j�,
see left panel of Fig. 1. This general relation between corre-
lation functions of the QCM will be proved below.

We will prove that in the ground state of the QCM for any
two sites �i , j� and �k , l� and for any 0���1

�Xi,jXi+1,jXk,lXk+1,l� � �Xi,jXi+1,jXl−�,k+�Xl−�+1,k+�� , �5�

where �= j− i,15 i.e., the second dimer is reflected with re-
spect to the diagonal. To prove Eq. �5� let us transform again
the effective Hamiltonian �4� in the ground subspace �ri
�si�1� introducing new spin operators

Zi,j� = Z̃i,jZ̃i,j+1, Xi,j� = 	
r=1

j

X̃i,r �6�

with i , j=1, . . . ,L−1 and Z̃i,L�1. This yields to

H̃x = �
i=1

L−1

�
j=1

L−1

X̃i,j + 	
i=1

L−1

	
j=1

L−1

X̃i,j + �
i=1

L−1

	
j=1

L−1

X̃i,j + �
i=1

L−1

	
j=1

L−1

X̃j,i,

�7�

d+1

1

2

3

4

21 3 4
d

FIG. 1. �Color online� Example of the application of the proved
identities in two cases: left panel—Eq. �10� for a chosen dimer
Di,j �Xi,jXi+1,j �label 1�, correlations of Di,j with a given Dk,l are
the same for dimers Dk,l marked with the same label �color�; right
panel—Eq. �11� long-range correlation function �Xi,jXi+d+1,j� along
the column �circles� is equal to the 2d—point �XX , . . . ,X� correla-
tion function along the row �frame of length d�.

(k,l)

(i,i) (l,k)

FIG. 2. �Color online� Schematic view of the z part of the re-
duced ground subspace Hamiltonian �8�: circles in the corners stand

for Z̃i,j spin operators related to the site �i , j�, dashed �red� frames

are Z̃Z̃ operator products acting on the boundaries of the lattice, and

solid �blue� square stands for one of the plaquette Z̃Z̃Z̃Z̃ spin op-
erators. The exemplary three sites in the identity �10� are: �i , i�,
�k , l�, and �l ,k�.
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H̃z = �
a

�

b

Z̃a,b + �
i=1

L−2

�Z̃a,iZ̃a,i+1 + Z̃i,aZ̃i+1,a��
+ �

i=1

L−2

�
j=1

L−2

Z̃i,jZ̃i,j+1Z̃i+1,jZ̃i+1,j+1, �8�

where a ,b=1, L−1. Due to the spin transformations Eqs. �2�,
�3�, and �6�, X̃i,j operators are related to the original bond

operators by Xi,jXi+1,j = X̃i,j, which implies that

�Xi,jXi+1,jXk,lXk+1,l� = �X̃i,jX̃k,l� . �9�

Because of the PBC, all original Xi,j spins are equivalent,
so we choose i= j. The x part, Eq. �7�, of the Hamiltonian is
completely isotropic. Note that the z part, Eq. �8�, would also
be isotropic without the boundary terms �see Fig. 2�; the
effective Hamiltonian in the ground subspace has the sym-
metry of a square. Knowing that in the ground state we have
only Z2 degeneracy, one finds

�X̃i,iX̃k,l� � �X̃i,iX̃l,k� �10�

for any i and �k , l�. This proves the identity �5� for �=0; �
�0 case follows from lattice translations along rows.

The nontrivial consequences of Eq. �10� are: �i� hidden
dimer order in the ground state of the QCM, i.e., an “isotro-
pic” behavior of the two-pair correlator in spite of aniso-
tropic interactions in the entire range of 0���1 �see Fig. 3�
and �ii� long-range two-site �Xi,jXi+d+1,j� correlations of range
d along the columns which are equal to the multisite
�XX , . . . ,X� correlations involving two neighboring rows, see
right panel of Fig. 1. The latter follows from the symmetry
properties of the transformed Hamiltonian Eqs. �7� and �8�
applied to the multisite correlations

�X̃i,iX̃i,i+1 . . . X̃i,i+d� = �X̃i,iX̃i+1,i . . . X̃i+d,i� . �11�

V. MEAN-FIELD APPROXIMATION

The x part of the Hamiltonian obtained from Eq. �4� in
case of open boundaries reads

Hx� = �
i=1

L−1
�
j=1

L−2

Xi,j� Xi,j+1� + Xi,1� + riXi,L−1� � �12�

and similarly for the z part. In the ground subspace �ri�1�
this resembles the original QCM, Eq. �1�, but with linear
boundary terms, which should not affect the ground-state
properties in the thermodynamic limit and can be regarded as
symmetry-breaking fields, resulting in finite values of �Xi,j� �
and �Zi,j� �. Omitting the boundary terms in Hx� and Hz� and
putting infinite L we recover the 2D QCM written in nonlo-
cal primed spin operators. Now we can construct a MF split-
ting of the 2D lattice into �ferromagnetic� Ising chains in
transverse field, taking common �Z����Zi,j� � as a Weiss field
for each row i

Hi���� = − �
j

��1 − ��Xi,j� Xi,j+1� + 2��Z��Zi,j� � . �13�

In analogy to the compass ladder,13 it can be solved by
Jordan-Wigner transformation for each i

Zi,j� = 1 − 2ci,j
† ci,j , �14�

Xi,j� = �ci,j
† e−i�/4 + ci,je

i�/4�	
r�j

�1 − 2ci,r
† ci,r� �15�

introducing fermion operators �ci,j
† �. The diagonalization of

the free fermion Hamiltonian can be completed by perform-
ing first a Fourier transformation �from �j� to �k�� and next a
Bogoliubov transformation �for k�0�: �k

†=�k
+ck

†+	k
+c−k and

�−k
† =�k

−ck
†+	k

−c−k, where ��k

 ,	k


� are eigenmodes of the
Bogoliubov-de Gennes equation for the eigenvalues 
Ek
�with Ek�0�. The resulting ground state is a vacuum of �k

†

fermion operators: ��0�=	k�0��k
++	k

+c−k
† ck

†��0�, which can
serve to calculate correlations and the order parameter of the
QCM in the MF approach. In agreement with numerical re-
sults �not shown�, the only nonzero long-range two-site spin-
correlation functions are: �Xi,jXi+d,j� and �Zi,jZi,j+d�. For
d�1 they can be represented as follows:

�Xi,jXi+d,j� = �Xi,j� Xi,j+1� �d, �16�

0.2 0.3 0.4 0.5 0.6 0.7 0.8
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FIG. 3. �Color online� Two-dimer �X1,1X2,1Xk,lXk+1,l� correla-
tions for L=6 and 0.2���0.8: �k , l�= �1,2�, �1,3�, and �1,4� are
shown by solid, dashed, and dotted line.
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FIG. 4. �Color online� Long-range spin correlations of the 2D
QCM, Eq. �1�, obtained in the MF approach for ��

1
2 . Lines start-

ing from 1 at �=1 are the �Zi,jZi,j+d� correlations in Eq. �17� for
d=1,2 ,3 ,4 ,5 ,10,20,80 while lines starting from 0 at �=1 are the
�Xi,jXi+d,j� correlations in Eq. �16� with d=1,2 ,3; both in descend-
ing order.
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�Zi,jZi,j+d� = �Zi,j� Zi,j+1� . . . Zi,j+d−1� �2. �17�

Having solved the self-consistency equation for �Z��
= �1−2�n��, with �n�= 1

L�k�0��k
−2+	k

+2�, one can easily ob-
tain �Xi,j� Xi,j+1� �, Eq. �16�, for increasing �

�Xi,j� Xi,j+1� � =
2

L
�
k�0

�cos k��k
−2 + 	k

+2� + sin k��k
−	k

− − �k
+	k

+�� .

�18�

The nonlocal �Zi,j� Z� . . .Zi,j+d−1� � correlations Eq. �17� are
more difficult to find but they can be approximated by

�Zi,j� Zi,j+1� . . . Zi,j+d−1� � = 	
k�0


�k
+2
1 − 2

d

L
�2

+ 	k
+2� ,

�19�

where L→
 and k= �2l−1� �
L with l=1,2 , . . . , L

2 . This ap-
proximation is valid as long as d�L. One finds that the
long-range �Zi,jZi,j+d� correlations in Z-ordered phase at �
�

1
2 show the absence of the Ising-type long-range order for

��1 �Fig. 4�—they decrease slowly with growing distance
d or decreasing �.16 In contrast, the �Xi,jXi+d,j� correlations
are significant only for nearest neighbors �d=1� and close to
�= 1

2 .
The advantage of this nonlocal MF approach for the QCM

Eq. �1� over the standard one, which takes �Z� as a Weiss
field, is that we do not break the �Pi ,Qj� and Z2 symmetries
of the model. What more, thanks to numerical and analytical
results we know that order parameter of the QCM is given by
�Hz� �Ref. 4�—the quantity behaving more like �Z�� rather
than �Z� �having �Z��0 would mean long-range magnetic
order�. Another interesting feature of the Hamiltonian �1� is
that it describes all nonlocal compass excitations over the

ground state while the local ones manifest themselves by
directions of symmetry-breaking fields. These nonlocal col-
umn �row� flips are especially interesting from the point of
view of topological quantum computing2 because they guar-
antee that the system is protected against local perturbations.

VI. CONCLUSIONS

On the example of the QCM, we argue that the properties
of spin models which are not SU�2� symmetric can be
uniquely determined by discrete symmetries such as parity.
In this case conservation of spin parities in rows and col-
umns, for x and z components of spins, makes the system in
the ground-state behave according to a nonlocal Hamiltonian
�4�.17 In the ground state most of the two-site spin correla-
tions vanish and the two-dimer correlations exhibit the non-
trivial hidden order. The excitations involve whole lines of
spins in the lattice and occur in invariant subspaces which
can be classified by lattice translations—the reduction in the
Hilbert space achieved in this way is important for future
numerical studies of the QCM and will play a role for spin
models with similar symmetries. Finally, the nonlocal Hamil-
tonian containing symmetry-breaking terms suggests the MF
splitting respecting conservation of parity and leading to the
known physics of one-dimensional quantum Ising model de-
scribing correlation functions and the order parameter of the
QCM.
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